Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Int Immunopharmacol ; 120: 110333, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2316548

ABSTRACT

BACKGROUND: The differences in host antiviral gene expression and disease severity between vaccinated and non-vaccinated coronavirus disease 2019 (COVID-19) patients are not well characterized. We sought to compare the clinical characteristics and host antiviral gene expression patterns of vaccinated and non-vaccinated cohorts at the Second People's Hospital of Fuyang City. METHODS: In this case-control study, we retrospectively analyzed 113 vaccinated patients with a COVID-19 Omicron variant infection, 46 non-vaccinated COVID-19 patients, and 24 healthy subjects (no history of COVID-19) recruited from the Second People's Hospital of Fuyang City. Blood samples were collected from each study participant for RNA extraction and PCR. We compared host antiviral gene expression profiles between healthy controls and COVID-19 patients who were either vaccinated or non-vaccinated at the time of infection. RESULTS: In the vaccinated group, most patients were asymptomatic, with only 42.9 % of patients developing fever. Notably, no patients had extrapulmonary organ damage. In contrast, 21.4 % of patients in the non-vaccinated group developed severe/critical (SC) disease and 78.6 % had mild/moderate (MM) disease, with fever occurring in 74.2 % patients. We found that Omicron infection in COVID-19 vaccinated patients was associated with significantly increased expression of several important host antiviral genes including IL12B, IL13, CXCL11, CXCL9, IFNA2, IFNA1, IFNγ, and TNFα. CONCLUSION: Vaccinated patients infected with the Omicron variant were mostly asymptomatic. In contrast, non-vaccinated patients frequently developed SC or MM disease. Older patients with SC COVID-19 also had a higher occurrence of mild liver dysfunction. Omicron infection in COVID-19 vaccinated patients was associated with the activation of key host antiviral genes and thus may play a role in reducing disease severity.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Case-Control Studies , Retrospective Studies , COVID-19/epidemiology , SARS-CoV-2 , China/epidemiology , Vaccination , Disease Outbreaks , Fever , Gene Expression
2.
Int J Pharm ; 638: 122921, 2023 May 10.
Article in English | MEDLINE | ID: covidwho-2298791

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2), resulting in a serious burden on public health and social economy worldwide. SARS-CoV-2 infection is mainly initialized in the nasopharyngeal cavity through the binding of viral spike (S) protein to human angiotensin-converting enzyme 2 (hACE2) receptors which are widely expressed in many human cells. Thus, blockade of the interaction between viral S protein and hACE2 receptor in the primary entry site is a promising prevention strategy for the management of COVID-19. Here we showed protein microparticles (PMPs) decorated with hACE2 could bind and neutralize SARS-CoV-2 S protein-expressing pseudovirus (PSV) and protect host cells from infection in vitro. In the hACE2 transgenic mouse model, administration of intranasal spray with hACE2-decorated PMPs markedly decreased the viral load of SARS-CoV-2 in the lungs though the inflammation was not attenuated significantly. Our results provided evidence for developing functionalized PMPs as a potential strategy for preventing emerging air-borne infectious pathogens, such as SARS-CoV-2 infection.


Subject(s)
COVID-19 , Humans , Mice , Animals , COVID-19/prevention & control , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Spike Glycoprotein, Coronavirus/metabolism , Mice, Transgenic
3.
Microbiol Spectr ; 11(3): e0050323, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2292792

ABSTRACT

Currently approved vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have focused solely on the spike protein to provide immunity. The first vaccines were developed rapidly using spike mRNA delivered by lipid nanoparticles but required ultralow-temperature storage and have had limited immunity against variations in spike. Subsequently, protein-based vaccines were developed, which offer broader immunity but require significant time for development and the use of an adjuvant to boost the immune response. Here, exosomes were used to deliver a bivalent protein-based vaccine in which two independent viral proteins were used. Exosomes were engineered to express either SARS-CoV-2 delta spike (Stealth X-Spike [STX-S]) or the more conserved nucleocapsid (Stealth X-Nucleocapsid [STX-N]) protein on the surface. When administered as a single product (STX-S or STX-N) or in combination (STX-S+N), both STX-S and STX-N induced strong immunization with the production of potent humoral and cellular immune responses. Interestingly, these results were obtained with the administration of only nanograms of protein and without an adjuvant. In two independent animal models (mouse and rabbit), the administration of nanograms of the STX-S+N vaccine resulted in increased antibody production, potent neutralizing antibodies with cross-reactivity to other variants of spike, and strong T-cell responses. Importantly, no competition of immune responses was observed, allowing the delivery of nucleocapsid with spike to offer improved SARS-CoV-2 immunity. These data show that the StealthX exosome platform has the enormous potential to revolutionize vaccinology by combining the advantages of mRNA and recombinant protein vaccines into a superior, rapidly generated, low-dose vaccine resulting in potent, broader immunity. IMPORTANCE The pandemic emergency has brought to light the need for a new generation of rapidly developed vaccines that induce longer-lasting, potent, and broader immune responses. While the mRNA vaccines played a critical role during the emergency in reducing SARS-CoV-2 hospitalization rates and deaths, more efficient approaches are needed. A multivalent, protein-based vaccine delivered by exosomes could meet this urgent need due to the high speed of development, manufacturability, and the ability to produce a strong antibody response, with neutralizing antibodies and a strong T-cell response able to broadly combat viral infection with a minimum number of injections.


Subject(s)
COVID-19 , Exosomes , Viral Vaccines , Animals , Mice , Rabbits , T-Lymphocytes , SARS-CoV-2/genetics , COVID-19/prevention & control , Viral Vaccines/genetics , Vaccines, Combined , Antibodies, Viral , Immunization , Antibodies, Neutralizing , RNA, Messenger
4.
Library Hi Tech ; 40(2):323-339, 2022.
Article in English | ProQuest Central | ID: covidwho-1764783

ABSTRACT

Purpose>The massive amount of available information and functionality of the Internet makes selective information seeking effortless. This paper aims to understand the selective exposure to information during a health decision-making task.Design/methodology/approach>This study conducted an experiment with a sample of 36 students to examine the influence of prior attitude, perceived threat level and information limit on users’ selective exposure to and recall of coronavirus disease 2019 (COVID-19) vaccination information. Participants were assigned to two conditions with or without an upper limit of the number of articles to be examined, and this study collected the number of articles read, the number of articles included in the report and recall score of the articles after one day of the experiment.Findings>This study found that (1) participants with a negative attitude were more inclined to view attitude-consistent information and recalled attitude-consistent information more accurately, while participants with a positive attitude viewed more balanced information;(2) participants perceiving higher health threat level recalled attitude-consistent information more accurately;and (3) an upper limit on the number of articles to be viewed does not have any impact on selective exposure.Research limitations/implications>The findings of this paper pinpoint the disparity of influence of positive and negative attitudes on selective exposure to and selective recall of health information, which was not previously recognized.Practical implications>Vaccination campaigns should focus on reaching people with negative attitudes who are more prone to selective exposure to encourage them to seek more balanced information.Originality/value>This is the first paper to explore selective exposure to COVID-19 vaccination information. This study found that people with a negative attitude and a higher level of perceived health threat are more prone to selective exposure, which was not found in previous research.

5.
Front Pharmacol ; 12: 722126, 2021.
Article in English | MEDLINE | ID: covidwho-1515540

ABSTRACT

Background and Aims: Qingfei Paidu decoction (QPD) and Xuanfei Baidu decoction (XBD) are two typical traditional Chinese medicines with proven efficacy for the treatment of SARS-CoV-2, although the underlying mechanism is not well defined. Blunted immune response and enhanced production of pro-inflammatory cytokines (cytokine storm) are two main features observed in patients infected with SARS-CoV-2. Analysis based on network pharmacology has revealed that both QPD and XBD played an important role in the regulation of host immunity. We therefore investigated the role of QPD and XBD in the modulation of innate immunity in vitro, focusing on the type 1 interferon (IFN) signaling pathway in A549 cells and pro-inflammatory cytokine production in macrophages. Methods: A549 cells were treated with QPD or XBD and the production of endogenous IFNα and IFNß as well as the expression levels of some interferon-stimulated genes (ISGs) were detected by reverse transcriptase-quantitative PCR (RT-qPCR). Macrophages derived from THP-1 cells were treated with QPD or XBD and their pro-inflammatory cytokine expression levels were measured by RT-qPCR, 6 h post LPS stimulation. In addition, the expression levels of some pro-inflammatory cytokines were further analyzed by ELISA. The effect of QPD and XBD on the NF-κB signaling pathway and the pinocytosis activity of THP-1-derived macrophages were evaluated by Western blot and neutral red uptake assay, respectively. Results: Although QPD and XBD showed very little effect on the type 1 IFN signaling pathway in A549 cells, either QPD or XBD markedly inhibited the production of pro-inflammatory markers including interleukin-6, tumor necrosis factor-α, monocyte chemotactic protein-1, and chemokine ligand 10 in THP-1-derived M1 macrophages. In addition, the phosphorylation of IκBα and NF-κB p65 during the process of macrophage polarization was significantly suppressed following QPD or XBD treatment. QPD and XBD also suppressed the pinocytosis activity of macrophages. Conclusion: QPD and XBD have been shown to have robust anti-inflammatory activities in vitro. Our study demonstrated that both QPD and XBD decreased pro-inflammatory cytokine expression, inhibited the activation of the NF-κB signaling pathway, and blunted pinocytosis activity in THP-1-derived macrophages.

6.
World J Gastroenterol ; 27(27): 4358-4370, 2021 Jul 21.
Article in English | MEDLINE | ID: covidwho-1328147

ABSTRACT

Since it was first reported in December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has spread rapidly around the world to cause the ongoing pandemic. Although the clinical manifestations of SARS-CoV-2 infection are predominantly in the respiratory system, liver enzyme abnormalities exist in around half of the cases, which indicate liver injury, and raise clinical concern. At present, there is no consensus whether the liver injury is directly caused by viral replication in the liver tissue or indirectly by the systemic inflammatory response. This review aims to summarize the clinical manifestations and to explore the underlying mechanisms of liver dysfunction in patients with SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Liver , Pandemics , Virus Replication
7.
Aging (Albany NY) ; 13(7): 9265-9276, 2021 03 29.
Article in English | MEDLINE | ID: covidwho-1156226

ABSTRACT

BACKGROUND: Dysregulated immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are thought to underlie the progression of coronavirus disease 2019 (COVID-19). We sought to further characterize host antiviral and cytokine gene expression in COVID-19 patients based on illness severity. METHODS: In this case-control study, we retrospectively analyzed 46 recovered COVID-19 patients and 24 healthy subjects (no history of COVID-19) recruited from the Second People's Hospital of Fuyang City. Blood samples were collected from each study participant for RNA extraction and PCR. We assessed changes in antiviral gene expression between healthy controls and patients with mild/moderate (MM) and severe/critical (SC) disease. RESULTS: We found that type I interferon signaling (IFNA2, TLR8, IFNA1, IFNAR1, TLR9, IRF7, ISG15, APOBEC3G, and MX1) and genes encoding proinflammatory cytokines (IL12B, IL15, IL6, IL12A and IL1B) and chemokines (CXCL9, CXCL11 and CXCL10) were upregulated in patients with MM and SC disease. Moreover, we found that IFNA1, apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3G (APOBEC3G), and Fas-associated protein with death domain (FADD) were significantly downregulated (P < 0.05) in the SC group compared to the MM group. We also observed that microRNA (miR)-155 and miR-130a levels were markedly higher in the MM group compared to the SC group. CONCLUSION: COVID-19 is associated with the activation of host antiviral genes. Induction of the IFN system appears to be particularly important in controlling SARS-CoV-2 infection, as decreased expression of IFNA1, APOBEC3G and FADD genes in SC patients, relative to MM patients, may be associated with disease progression.


Subject(s)
COVID-19/genetics , COVID-19/immunology , Immunity, Innate , SARS-CoV-2/immunology , APOBEC-3G Deaminase/genetics , APOBEC-3G Deaminase/immunology , Adult , Aged , Case-Control Studies , Cytokines/genetics , Cytokines/immunology , Female , Humans , Interferon Type I/genetics , Interferon Type I/immunology , Male , Middle Aged , Retrospective Studies , Severity of Illness Index , Transcriptome , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL